Inversion of Circulant Matrices over Zm

نویسندگان

  • Dario Bini
  • Gianna M. Del Corso
  • Giovanni Manzini
  • Luciano Margara
چکیده

In this paper we consider the problem of inverting an n × n circulant matrix with entries over Zm. We show that the algorithm for inverting circulants, based on the reduction to diagonal form by means of FFT, has some drawbacks when working over Zm. We present three different algorithms which do not use this approach. Our algorithms require different degrees of knowledge of m and n, and their costs range, roughly, from n logn log logn to n log n log logn logm operations over Zm. Moreover, for each algorithm we give the cost in terms of bit operations. We also present an algorithm for the inversion of finitely generated bi-infinite Toeplitz matrices. The problems considered in this paper have applications to the theory of linear cellular automata.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of the q-th roots of circulant matrices

In this paper, we investigate the reduced form of circulant matrices and we show that the problem of computing the q-th roots of a nonsingular circulant matrix A can be reduced to that of computing the q-th roots of two half size matrices B - C and B + C.

متن کامل

A note on inversion of Toeplitz matrices

It is shown that the invertibility of a Toeplitz matrix can be determined through the solvability of two standard equations. The inverse matrix can be denoted as a sum of products of circulant matrices and upper triangular Toeplitz matrices. The stability of the inversion formula for a Toeplitz matrix is also considered. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

Structuredquasi - cyclicLDPCcodeswith girth 18 and column - weight J 3

A class of maximum-girth geometrically structured quasi-cyclic (QC) low-density parity-check (LDPC) codes with columnweight J 3 is presented. The method is based on the slope concept between two circulant permutation matrices and the concept of slope matrices. A LDPC code presented by a mv ×ml parity-check matrix H , consisting of m ×m matrices each of which is either a circulant permutation ma...

متن کامل

Vector-Circulant Matrices and Vector-Circulant Based Additive Codes over Finite Fields

Circulant matrices have attracted interest due to their rich algebraic structures and various applications. In this paper, the concept of vector-circulant matrices over finite fields is studied as a generalization of circulant matrices. The algebraic characterization for such matrices has been discussed. As applications, constructions of vector-circulant based additive codes over finite fields ...

متن کامل

Fast circulant block Jacket transform based on the Pauli matrices

Owing to its orthogonality, simplicity of the inversion and fast algorithms, Jacket transform generalising from the Hadamard transform has played important roles in signal and image processing, mobile communication for coding design, cryptography, etc. In this paper, inspired by the emerging block Jacket transform, a new class of circulant block Jacket matrices (CBJMs) are mathematically define...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998